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ABSTRACT
Sequential recommendation aims to predict the next item which
interests users via modeling their interest in items over time. Most
of the existing works on sequential recommendation model users’
dynamic interest in specific items while overlooking users’ static
interest revealed by some static attribute information of items, e.g.,
category, brand. Moreover, existing works often only consider the
positive excitation of a user’s historical interactions on his/her next
choice on candidate items while ignoring the commonly existing
negative excitation, resulting in insufficiently modeling dynamic
interest. The overlook of static interest and negative excitation
will lead to incomplete interest modeling and thus impedes the
recommendation performance. To this end, in this paper, we pro-
pose modeling both static interest and negative excitation for dy-
namic interest to further improve the recommendation performance.
Accordingly, we design a novel Static-Dynamic Interest Learning
(SDIL) framework featured with a novel Temporal Positive and Neg-
ative Excitation Modeling (TPNE) module for accurate sequential
recommendation. TPNE is specially designed for comprehensively
modeling dynamic interest based on temporal positive and nega-
tive excitation learning. Extensive experiments on three real-world
datasets show that SDIL can effectively capture both static and
dynamic interest and outperforms state-of-the-art baselines.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Sequential Recommendation, Temporal Information Modeling, At-
tention Mechanism

1 INTRODUCTION
Sequential recommender systems (SRSs) aim to generate sequential
recommendations by predicting the next item which interests a
given user. SRSs generally model the user’s dynamic and timely
interest in items from a sequence of historically interacted items for
the recommendation. Benefiting from the strength of well-capturing
users’ interest changes over time, SRSs are able to provide more
accurate and timely recommendation results to users [30].
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Figure 1: An example of recommendations via modeling pos-
itive excitation only (existing methods) and modeling both
positive and negative excitation (our proposal). Clearly, the
latter achieves better performance via ranking the ground-
truth next item AirPods at the Top-1 position in the recom-
mendation list.

A variety of SRS methods based on different models including
Markov chain models, latent representation learning models, and
deep learning models have been proposed in recent years. For in-
stance, Markov chain-based SRSs adopt Markov chain models to
model the first-order transitions over user-item interactions within
an interaction sequence to predict the probable next item [21, 23].
Distributed representation learning-based methods map each in-
teraction into a latent representation via capturing the contextual
information for next-item recommendations [12]. In recent years,
advanced models including shallow or deep neural models have
been employed in SRSs to improve the recommendation perfor-
mance. For example, Recurrent Neural Networks (RNN) have been
utilized to model the long- and short-term sequential dependencies
in a sequence of interactions for next-item recommendations [10].
Convolutional Neural Network (CNN) [36] and self-attention [14]
models have been incorporated into SRSs for capturing more com-
plex sequential dependencies (e.g., skip dependencies or collective
dependencies) for next-item recommendations. These SRS methods
have achieved remarkable recommendation performance.

Although remarkable recommendation performance has been
achieved, there are still some significant gaps which prevent the
further performance improvement of existing SRS methods. To
be specific, most of the existing SRSs only model users’ dynamic
interest in items while overlooking users’ static interest [38] (Gap 1).
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However, static interest is also an important factor to determine
which item to interact with for a given user. In this paper, dynamic
interestmeans users’ interest in specific items, which are captured
from the ID information of a sequence of items interacted by each
user. For instance, a user may be interested in iPhone 12. Item ID
often changes frequently in most sequences, leading to frequent
fluctuations of users’ dynamic interest. Static interest refer to
users’ interest at a relatively higher level (e.g., item category or
brand) and are usually more stable and change less frequently. For
instance, a user may be interested in Apple products. Obviously,
static interest changes less frequently than dynamic interest.

More importantly, most of the existing SRSs cannot thoroughly
capture users’ dynamic interest since they often only model the posi-
tive excitation while overlooking negative one (Gap 2). In SRSs, the
positive (resp., negative) excitation refers to one prior interac-
tion has a positive (resp., negative) impact on the next interaction.
For instance, as an individual user, Alice may purchase a lens after
she has purchased a Canon camera. However, it is unlikely that
she will purchase another Nikon camera in a short period. In such
a case, the purchase of Canon camera has positive excitation on
the purchase of lens and negative excitation on that of Nikon cam-
era. Clearly, negative excitation is an important signal to indicate
which item may not be of the user’s interest at the next time point
and thus is necessary for accurate sequential recommendations.
Although a few works in the literature have tried to model excita-
tion for sequential recommendations, they generally only consider
the positive excitation while ignoring the negative one [26] [31].
For example, Wang et al. [26] defined a short-term and life-long
positive self-excitation function for next-item recommendations.

Aiming at bridging the aforementioned two significant gaps in
exiting SRSs, we propose a novel Static-Dynamic Interest Learning
(SDIL) framework. SDIL is able to comprehensively model users’
static and dynamic interest in items for generating accurate se-
quential recommendations. SDIL consists of (1) a Static Interest
Modeling (SIM) module, (2) a Dynamic Interest Modeling (DIM)
module, and (3) a next-item prediction module. To be specific, given
a sequence of items interacted by a user, the corresponding attribute
information of these items is input into the SIM module to capture
the static interest of the user. Meanwhile, the ID information of
these items is imported into the DIM module to comprehensively
capture the user’s dynamic interest. Then, both types of interest are
well integrated as the input of the downstream prediction module
for the next-item prediction.

More importantly, we devise a novel Temporal Positive and
Negative Excitation Modeling (TPNE) framework to quip the DIM
module, which constitutes the main contribution of this work. In-
spired by [26], TPNE is built on the basis of the temporal point
process (TPP) [22], which is a classical model for modeling dis-
crete event sequences in a continuous time period. In TPNE, first, a
relation-based temporal module is designed to model the positive
or negative excitation of each of a user’s historical interactions on
his/her next choice on candidate items. Here, the relation mainly
refers to the substitute/complementary relations between items,
which are extracted from the "co-click" (of items), "co-purchase"
data. Then, a novel time decay kernel function is particularly de-
signed to measure the excitation strength of each historical interac-
tion according to the time interval between it and the next choice.

Time interval is a key factor to determine whether the excitation
strength is strong or weak. [26, 31]

The main contributions of this work can be summarized below:
• Wepropose a novel Static-Dynamic Interest Learning (SDIL)

framework for comprehensively modeling users’ interest
in items. SDIL consists of a static interest modeling (SIM)
module, a dynamic interest modeling (DIM) module, and a
next-item prediction module.

• We devise a novel Temporal Positive and Negative Excita-
tion Modeling (TPNE) framework to quip the DIM module.
TPNE is good at modeling both the positive and negative
excitation as well as the excitation strength.

• We evaluate our SDIL on three real-world datasets with
different characteristics. Extensive experiments not only
show the consistent superiority of SDIL over state-of-the-
art baselines but also verify the rationality and effectiveness
of our design in SDIL.

2 RELATEDWORK
2.1 Sequential Recommendation
Sequential recommendation intends to recommend items that may
interest users bymodeling the sequential dependencies across users’
historical interactions. A variety of methods have been proposed for
the SRS task including rule-based methods [34], KNN-based meth-
ods [13], Factorization machine-based methods, and Markov chain-
based methods [7, 21]. Nevertheless, these methods fail to model the
long user behavior sequences in terms of the limited representation
ability of models. Recent years have witnessed the success of deep
learning-based methods applying in user modeling [8, 9], various
models like CNN-based model [36], RNN-based models [10] [11],
self-attention based models [14] [37] were explored for SRS task.
We briefly review attention-based SRS methods, which are most rel-
evant to our work. The self-attention mechanism was proposed by
Vaswani et al. [24]. Benefiting from its strong ability to model the
correlations among context information, many works employed it
in SRS by intensifying the correlation between important historical
items and target items. Li et al. proposed the NARM [16], which
leverages a global and local encoder with an attention module to
model both user short- and long-term interest. Wang et al. [29]
propose the ATEM, which is an attention-based transition embed-
ding model. It builds the attentive context embedding without order
assumption. Kang et al. [14] utilizes the transformer architecture
to bridge the item-item relationship, which gains significant per-
formance in the next-item prediction task. However, all of these
methods only focus on the item relations s within sequences, over-
looking the vital temporal signals, which might lead to the sequen-
tial patterns being hard to generalize on unseen timestamps or
different time intervals.

2.2 Time-sensitive Recommendation
Temporal recommendation considers the temporal evolution of user
interest in item transition, represented by methods based on matrix
factorization. TimeSVD++ [15] achieved strong results by splitting
time into several bins of segments and combining it into the CF
framework. Bayesian Probabilistic Tensor Factorization(BPTF) [33]
is proposed to include time as an extra dimension for the tensor
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factorization, which is an extension of traditional MF methods.
After that, a variety of works attempt to model the long- and short-
term user interest separately. For instance, Zhu et. al. [40] propose
the TimeLSTM to capture users’ long and short-term dynamic
interest through the specific time gates. Cai et. al. [1] propose the
LSHP, combining the short-term and long-term Hawkes Processes
based on different segments of user history to predict the type and
time of the next action in sequential online interactive behavior
modeling. Wang et. al. [26] also leverages the Hawkes Processes to
model the user repeat consumption behavior from the perspective
of short- and life-long terms. After that, Wang et al. [27] designs
the multiple forms of temporal decay functions for item relations
in the user interaction history. Recently, Wang et al. [25] have
devised relational intensity and frequency domain embeddings
to adaptively determine the importance of historical interactions.
Besides, Fan et.al. [5] design a new framework TGSRec upon a
pre-defined continuous-time bipartite graph, which can capture
collaborative signals from both users and items, as well as consider
temporal dynamics within sequential patterns. Although these time-
sensitive methods well model the user’s dynamic interest changes,
they do not explicitly model the user’s relatively stable interest.
Meanwhile, most methods attempt to learn the positive temporal
collaborative signals. but ignoring the effectiveness of negative
temporal signals.

3 PRELIMINARY
3.1 Problem Formulation
LetU = {𝑢1, 𝑢2, ..., 𝑢 |𝑈 | } andV = {𝑣1, 𝑣2, ..., 𝑣 |𝑉 | } be user set and
item set respectively. For each user 𝑢 ∈ U, there is a chronological
sequence of items interacted by 𝑢, denoted as 𝐻𝑢 = {𝑣1, 𝑣2, ..., 𝑣𝑛},
where 𝑛 is the length of the sequence 𝐻𝑢 . For each item 𝑣𝑖 ∈ 𝐻𝑢 ,
it is associated with a set of attribute information including item
category 𝑐𝑖 , item brand 𝑏𝑖 , item price 𝑝𝑖 and interaction times-
tamp 𝑡𝑖 . Generally, for a user 𝑢, given her/his sequence context
𝑂 = {𝑣1, 𝑣2, ..., 𝑣𝑛−1} together with the associated item attribute
information, the task of an SRS is to predict the next item (target
item) 𝑣𝑛 which may interest 𝑢.

3.2 Hawkes Processes in Sequential Modeling
Hawkes Processes is one of the most classic evolutionary processes
[3, 6]. The traditional Hawkes Processes is defined by the following
conditional intensity function:

_(𝑡) = ` (𝑡) +
∑︁
𝑡𝑖<𝑡

𝜑 (𝑡 − 𝑡𝑖 ), (1)

where ` (𝑡) represents the base intensity of the model. 𝑡 and 𝑡𝑖 de-
note the happening time of the target event and that of the last event
respectively. Hence, 𝑡 − 𝑡𝑖 denotes the time interval between the
target event and the last event. 𝜑 (·) denotes the exciting function
of a Hawkes Process.

In practice, in the sequential recommendation scenario, a user’s
interest changes over time, and thus the interest evolution process
can be formalized as a Hawkes Process. Accordingly, the first term
` (𝑡) in Eq (1) can be used to indicate the basic user interest in a
target item 𝑣𝑛 . The second term in Eq (1) means the accumulative

impact of all the historical context items bought before time 𝑡 on
the user’s interest at time 𝑡 .

4 METHODOLOGY
4.1 Overview
The framework of our proposed model is shown in Figure 2. Our
model is mainly composed of (1) a temporal dynamic user interest
modeling module, (2) a static user interest modeling module, and (3)
a next-item prediction module. The temporal dynamic user interest
modeling module models users’ dynamic interest which changes
over time by taking the ID information of historically interacted
items as the input. Specifically, both the positive and negative exci-
tation of each historical interaction on the user’s next choice will
be carefully considered. In addition, the temporal information (i.e.,
the time interval between a historical interaction and the next in-
teraction) is well utilized to measure how positive or negative the
excitation is. The static user interest modeling module models users’
static interest in items based on static attribute information of items
(e.g., item category, item brand) which are interacted by each user.
Finally, both the learned dynamic interest and static interest are
well integrated into the prediction module for the recommendation
of the next item.

4.2 Users’ Dynamic Interest Modeling
Temporal point processes (TPPs) are a flexible and powerful para-
digm that is good at modeling discrete event sequences localized in
a continuous time period. A sequence of items interacted by a given
user in a period well falls into this scenario. Hence, it is natural to
take a TPP as the basic structure to model user-item interaction
sequences. However, a classical TPP usually considers the positive
excitation of each prior event (e.g., user-item interaction) on the
following event (e.g., a user’s next choice) and cannot model the
possible negative excitation. Hence, they cannot be directly utilized
to model both positive and/or negative excitation of a user’s his-
torical interactions on his/her next choice. To this end, we devise a
novel Temporal Positive and Negative Excitation learning (TPNE)
module to model both positive and negative excitation of historical
interactions to well capture the user’s dynamic interest. More im-
portantly, TPNE is able to specify the excitation strength according
to the happening time of each historical interaction.

To be specific, we take the TPP approach as a base architecture to
build TPNE for capturing users’ dynamic interest. The most classic
model for the TPP is the Hawkes process, which is formulated as:

_𝑇 (𝑡) = _0 +
∑︁

𝑖:𝑡𝑖<𝑡𝑛
𝜑 (𝑡𝑛 − 𝑡𝑖 ), (2)

where _0 denotes the user’s basic interest in a candidate item.∑
𝑖:𝑡𝑖<𝑡𝑛 𝜑 (𝑡𝑛 − 𝑡𝑖 ) denotes the historical user-item interaction’s

excitation on target item 𝑣𝑛 . For the first term, it can be calculated
as:

_0 = 𝑒
𝑇
ℎ
𝑒𝑣𝑛 + 𝑢𝑏 + 𝑖𝑏 , (3)

where 𝑒ℎ denotes the user historical interest embedding revealed
from its historically interacted items and 𝑒𝑣𝑛 denotes the target
item ID embeddings. 𝑢𝑏 and 𝑖𝑏 denote the user bias and item bias
respectively. To well model the relationship between 𝑒ℎ and 𝑒𝑣𝑛 , we
adopt the self-attention module to train the basic interest value _0.
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Figure 2: The framework of our proposed SDIL framework. SDIL is composed of three main modules: user dynamic interest
modeling module (DIM), user static interest modeling module (SIM), and next-item prediction module. DIM captures a user’s
evolutionary dynamic interest by carefully modeling the time-sensitive positive and negative excitation of the user’s historical
interactions on the user’s current interest. The SIM captures the user’s relatively stable and high-level interest (e.g., interest in
item category, brand) from the attribute information of interacted items. Finally, the prediction module well integrates both
dynamic and static interest to obtain more precise interest for next-item prediction.

Given a user 𝑢, the input sequence is made up of item IDs se-
quence 𝐻𝑢 = {𝑣1, 𝑣2, ..., 𝑣𝑛}. To obtain a unique dense embedding
for each item ID, we use a linear embedding layer. Then we can
get the input item embedding matrix 𝐸 ∈ R |𝑉 |𝑥𝑑 (|𝑉 | denotes the
number of items and 𝑑 denotes the dimension of item embeddings).
For each item, its embedding 𝑒𝑣 = 𝐸 (𝑣) ∈ R1𝑥𝑑 . Then we can in-
put 𝐻𝑢 ’s item IDs to 𝐸 and obtain the user 𝑢’s item embedding
sequences and represent it as a matrix 𝐸 (𝐻𝑢 ). Then, following pre-
vious works [14, 31, 32], we introduce the position embedding 𝑝𝑜𝑠𝑖
in each timestamp so as to add the position information of histor-
ical items. The input are item ID embeddings’ matrix 𝐸 (𝐻𝑢 ) and
corresponding position embeddings 𝑃𝑂𝑆𝑖 :

𝐴𝑖 = 𝐴𝑡𝑡 ((𝐸 (𝐻𝑢 )+𝑃𝑂𝑆𝑖 )𝑊𝑄 , (𝐸 (𝐻𝑢 )+𝑃𝑂𝑆𝑖 )𝑊𝐾 , (𝐸 (𝐻𝑢 )+𝑃𝑂𝑆𝑖 )𝑊𝑉 ),
(4)

𝐴𝑡𝑡𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾⊤
√
𝑑

)
𝑉 , (5)

whereQ, K, andV denote query, key, and value respectively.𝑊𝑄 ,𝑊𝐾

and𝑊𝑉 denote the linear transformation matrices.

𝐸 (𝐻𝑢 ) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐻𝑢 + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐹𝐹𝑁 (𝐴𝑖 )). (6)

Similar to previous works [31, 32], we introduce the LayerNorm,
Dropout, and FFN layers to alleviate the over-fitting problem. Fi-
nally, we adopt the average pooling operation to get the user his-
torical interest embedding 𝑒ℎ :

𝑒ℎ =
1

|𝑁 | − 1

𝑛−1∑︁
𝑖=1

𝐸 (𝐻𝑢 )𝑖 , (7)

where |𝑁 | denotes the length of the user 𝑢 sequence. Then we can
calculate the the first term _𝑇 (𝑒𝑣𝑛 = 𝐸 (𝑣𝑛)) as Eq. (3).

For the second term, it denotes the multi-excitation process,
which represents the user history items’ impact on the target item,
that is to say, the dynamic user interest in target item 𝑣𝑛 . Thus, it
is important to curve the dynamic temporal kernel function.

Current Hawkes Process or Poisson process modeling states that
all past events should have positive influences on the occurrence
of current events. However, in real-world applications, there are
many situations that past events give negative effects on current
events. For example, after a user bought a new iPhone, in the short-
term, this purchase action would give a negative excitation signal to
other brand mobile phones. Inspired by previous work[26][27][4],
we propose modeling both positive and negative excitation for
SRS task, which is composed of two parts Positive Excitation
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Learning and Negative Excitation Learning. where 𝜑𝑝 denotes
the positive factor, and 𝜑𝑛 denotes the negative factor. We leverage
both positive and negative signals together, making up the reactive
point processes:

_𝑇 (𝑡) = _0 +
∑︁

𝑖:𝑡𝑖<𝑡𝑛
𝜑𝑝 (𝑡𝑛 − 𝑡𝑖 ) −

∑︁
𝑗 :𝑡 𝑗<𝑡𝑛

𝜑𝑛 (𝑡𝑛 − 𝑡 𝑗 ), (8)

where _0 denotes the basic preference of the user on item 𝑣𝑛 as
previously mentioned, 𝑡𝑖 denotes the happening time of positive
interaction related to 𝑣𝑛 . In contrast, 𝑡 𝑗 denotes the happening time
of negative interaction related to 𝑣𝑛 . Then we will discuss them
separately.

4.2.1 Positive Excitation Learning. For seeking the positive
correlation between historical items𝑂 and target item 𝑣𝑛 , we intro-
duce four different explicit relations: also_buy (𝑟1), also_view (𝑟2),
share_brand (𝑟3) and similar_item (𝑟4) contained in the datasets.
For also_buy and share_brand relations, we regard them as com-
plementary relations. While, for also_view and similar_item(two
items have a similar price within the same category), we regard
them as substitute relations. Then positive excitation learning can
be defined as:

𝜑𝑝 (𝑡𝑛 − 𝑡𝑖 ) =
∑︁
𝑖:𝑡𝑖<𝑡

𝐼𝑟𝑝 (𝑣𝑖 , 𝑣𝑛)K1 (𝑡𝑛 − 𝑡𝑖 ), (9)

where 𝐼𝑟𝑝 denotes the indicator function, if historical item 𝑣𝑖 has
a relation 𝑟 ∈ {𝑟1, 𝑟2, 𝑟3, 𝑟4} with 𝑣𝑛 , then the 𝐼𝑟𝑝=1, otherwise 0.
It bridges the excitation between context information and target
user interest. K1 (·) denotes the positive temporal kernel function,
which is composed of two parts as follow:

K𝑖
1 (Δ𝑡1) = 𝑁

(
Δ𝑡1 | 0, 𝜎𝑣1

)
+ 𝑁

(
Δ𝑡1 | `𝑣2 , 𝜎

𝑣
2
)
. (10)

Previous works [26, 31] commonly model the short-term posi-
tive effect of historical items on target item, which only leverages
the complementary information(𝑟1 and 𝑟3) to obtain the positive
excitation. We also model this positive complementary relation
signal in the first term 𝑁

(
Δ𝑡1 | 0, 𝜎𝑣1

)
, (Δ𝑡1 = 𝑡𝑛 − 𝑡𝑖 represents

the time interval between the target item 𝑣𝑛 and the related his-
torical item 𝑣𝑖 ). 𝜎𝑣1 is decided by item ID 𝑣𝑖 , which is item-specific
parameter. We leverage a normal distribution function to simulate
the user dynamic interest changes. For example, if a user buys a
mobile phone, who may have a high possibility to buy accessories
for the mobile phone in a short-term window, such as mobile phone
film, matching earphones and so on. However, with the growth of
time and the aging of the mobile phone, the interest of users to
buy the corresponding supporting products would gradually de-
crease. Thus, we choose a mean equals to 0 normal distribution to
model the user interest decay process. For the second term, which
happens because many items purchased by users have correspond-
ing lifespans. When the product life cycle is just approaching, the
probability of users purchasing similar substitute products will be
a strong positive incentive. For example, if a user buys a mobile
phone, and he/she needs to replace a brand new mobile phone one
year later, then this will bring a positive excitation for the substitute
relationship of similar items. We model this temporal relationship
using a normal distribution with mean `𝑣2 , which is also related to
𝑣𝑖 , which assumes the user begins to buy the substitute products
after `𝑣2 time interval.

4.2.2 Negative Excitation Learning. On the other hand, for
seeking the negative correlation between historical items𝑂 and tar-
get item 𝑣𝑛 , we leverage two different explicit relations: also_view
(𝑟2) and similar_item (𝑟4) contained in the datasets. We treat them
as substitute relations and define the negative excitation learning
as:

𝜑𝑛 (𝑡𝑛 − 𝑡 𝑗 ) =
∑︁

𝑗 :𝑡 𝑗<𝑡𝑛
𝐼𝑟𝑛 (𝑣 𝑗 , 𝑣𝑛)K2 (𝑡𝑛 − 𝑡 𝑗 ), (11)

where 𝐼𝑟𝑛 denotes the indicator function, if historical item 𝑣 𝑗 has
a relation 𝑟 ∈ {𝑟2, 𝑟4} with 𝑣𝑛 , then the 𝐼𝑟𝑛=1, otherwise 0. K2 (·)
denotes the negative temporal kernel function:

K2 (Δ𝑡2) = −𝑁
(
Δ𝑡2 | 0, 𝜎𝑣3

)
, (12)

where 𝑁
(
Δ𝑡2 | 0, 𝜎𝑣

𝑠3

)
is a normal distribution of Δ𝑡 (Δ𝑡2 = 𝑡𝑛 − 𝑡 𝑗 )

with 0 mean and 𝜎𝑣3 standard deviation. 𝜎𝑣
𝑠3 is also related to 𝑣 𝑗 .

From an empirical analysis, users rarely buy a large number of
substitutes of the same category in a short period of time. For
example, a simple example, a user has just purchased a Mac laptop,
so the probability of him/her buying another Lenovo laptop in
the short term would be very low. However, with time goes by,
the negative effect would decrease gradually, so we use a negative
normal distribution with ` = 0 to fit this process. (Noting that `𝑣2 ,
𝜎𝑣1 , 𝜎

𝑣
2 and 𝜎𝑣3 are all learn-able parameters.)

In summary, two different temporal patterns of SRS are mod-
eled positive excitation learning processes and negative excitation
learning processes. Since these two important temporal patterns
occur frequently across the whole user-item interaction history,
they can provide extra-temporal information to help us capture the
dynamics of users’ interest.

4.3 Users’ Static Interest Modeling
In real-world scenarios, users also have relatively fixed preferences
in sequential decision-making, such as high loyalty to a certain
brand and the choice of the item price, which are relatively stable
in the long term and not easy to change. Therefore, we believe that
this part of the more stable user interest should also be included in
the modeling to achieve more accurate recommendations.

To represent the users’ relatively stable interest in their interac-
tion history, we adopt the feature-based self-attention module to
model the user’s static interest. Because item IDs do not clearly indi-
cate fine-grained attributes that users are interested in, we leverage
the feature-based self-attention block to search for users’ prefer-
ences on static feature-level patterns. Specifically, we project the
discrete and heterogeneous attributes of items into low-dimensional
dense vectors and fuse these vectors, then use multi-head self-
attention to model the user’s static interest. Without loss of gen-
erality, we choose the category, brand, and price of three different
side information to comprehensively represent different aspects
of one item. We also use a linear embedding layer to obtain cate-
gory embedding matrix 𝐶 ∈ 𝑅 |𝐶 |×𝑑 , brand embedding matrix and
𝐵 ∈ 𝑅 |𝐵 |×𝑑 price embedding matrix 𝑃 ∈ 𝑅 |𝑃 |×𝑑 ( |𝐶 |,|𝐵 |,|𝑃 | denotes
the number of categories, brands and price bins respectively). Fur-
thermore, the 𝑐𝑖 ∈ 𝑅1𝑥𝑑 , 𝑏𝑖 ∈ 𝑅1𝑥𝑑 and 𝑝𝑖 ∈ 𝑅1𝑥𝑑 to denote each
item different feature embeddings respectively. Our approach is
easily extended to include more features. We adopt a simple yet



Chengkai, et al.

effective additive feature fusion mode:

𝑓𝑖 = 𝑐𝑖 + 𝑏𝑖 + 𝑝𝑖 , (13)

where 𝑓𝑖 ∈ 𝐹 denotes the fused feature-level item 𝑣𝑖 representation,
𝐹 denotes the stacked fusion matrices. Then for each user 𝑢, we
can get his/her fused feature sequence {𝑓1,𝑓2,𝑓3,...,𝑓𝑛}. We utilize
the multi-head self-attention network[24] to model the user’s his-
toric static interest. In the feature-level self-attention module, the
query(𝑄), key(𝐾 ), and value(𝑉 ) are the same and equal to 𝐹 , and we
use three different projection transformation matrices to convert
them into the same subspace:

𝐻𝑓 = 𝐴𝑡𝑡 (𝐹𝑊𝑄 , 𝐹𝑊𝐾 , 𝐹𝑊𝑉 ) . (14)

Noting that we do not use the position here because we assume
that user static interest is relatively stable and independent of user-
item interaction timestamp. Where𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 are the linear
transformation matrices. Then we adopt the multi-head attention
mechanism to gain more semantic information from different sub-
spaces.

𝑀𝑓 = 𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 (𝐹 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ1, ℎ2, ..., ℎ𝑙𝑓 )𝑊
𝑂 , (15)

ℎ𝑖 = 𝐴𝑡𝑡 (𝐹𝑊𝑄

𝑖
, 𝐹𝑊𝐾

𝑖 , 𝐹𝑊
𝑉
𝑖 ), (16)

where 𝑙𝑓 denotes the length of different heads, and here we also
apply the layer normalization, FFN layers and residual connection
module following previous works [38][32], alleviating the over-
fitting problem in the training phase.

𝑀𝑓 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑀𝑓 + 𝐻𝑓 ), (17)

𝐹𝐹𝑁 (𝑀𝑓 ) = ReLU(𝑀𝑓𝑊1 + 𝑏1)𝑊2 + 𝑏2, (18)
where𝑊1,𝑊2 and 𝑏1, 𝑏2 denotes the learnable parameters, we sum
pooling all the ℎ𝑖 in each user sequence to obtain the user static
interest representation 𝑒𝑠 .

𝑒𝑠 =
1

|𝑁 | − 1

|𝑁 |−1∑︁
𝑖=1

𝐻𝑓 , (19)

𝑒𝑠 provides more stable user interest on certain attributes (i.e. brand,
price in our case), such characteristics may not be easily perceived
but are indeed potential consumption habits of users.

4.4 Next-item Prediction
Since both dynamic user interest and static user interest are vital in
SRS task, it is crucial to combine them and as the input of the down-
stream prediction module for next-item prediction. Hence, inspired
by previous works [18, 35], we leverage the gate fusion module to
fuse the dynamic embedding 𝑒ℎ and static interest embedding 𝑒𝑠
so as to better next-item prediction.

𝑔 = 𝜎 (𝑊1𝑒𝑠 +𝑊2𝑒ℎ + 𝑏), (20)

𝑒𝑓 = 𝑔 ⊙ 𝑒𝑠 + (1 − 𝑔) ⊙ 𝑒ℎ, (21)
where𝑊1,𝑊2, and 𝑏 are the learnable parameters in the gating layer.
⊙ denotes the element-wise multiplication and 𝑔 ∈ R1𝑥𝑑 denotes
the learnable gate. Since there is some redundant information be-
tween user dynamic interest and static interest, we adaptively pass
the informative messages and restrain the useless ones to obtain
the final interest representation 𝑒𝑓 . In order to learn the parameters

Table 1: Statistics of the datasets after preprocessing.

Specs. Beauty Cellphones Toys

# Users 22,363 27,879 19,412
# Items 12,101 10,429 11,924
# Avg. Seq Length 8.8 7.0 8.6
# Interactions 198,502 194,439 167,597
# Sparsity 99.93% 99.94% 99.93%
# Item Categories 148 20 145

of the SDIL framework, we adopt the pairwise ranking loss (BPR
loss) [20] to optimize our model:

L𝑟 = −
∑︁
𝑢∈U

𝑁𝑢∑︁
𝑖=1

log𝜎
(
𝑦𝑢𝑖 − 𝑦𝑢 𝑗

)
, (22)

𝑦𝑢𝑖 = 𝑒
𝑇
𝑓
𝑒𝑖 + _𝑇,𝑖 , 𝑦𝑢 𝑗 = 𝑒

𝑇
𝑓
𝑒 𝑗 + _𝑇,𝑗 (23)

where 𝜎 represents the sigmoid function, 𝑦𝑢𝑖 represents the final
preference score of user 𝑢 to positive item 𝑖 while 𝑦𝑢 𝑗 represents
the final preference score of user 𝑢 to negative item 𝑗 .

5 EXPERIMENTS
5.1 Experimental Setting
5.1.1 Dataset Preparation. We conduct experiments on publicly
accessible Amazon datasets [19]. We choose three representative
sub-datasets from Amazon datasets: Beauty, Cell Phones and Ac-
cessories (Cellphones) and Toys and Games (Toys) and keep the ‘5-
core’ datasets [39][21][2], which filter out user-item interaction se-
quences with length less than 5. The statistics of evaluation datasets
are shown in Figure 1. Following the previous works[27][26], we
take "also buy" as complementary relations and "also view" as substi-
tute relations between items, i.e., items 𝑣1 and 𝑣2 are complementary
if most users who buy 𝑣1 also buy 𝑣2. In addition, we introduce two
more effective item relationships: (1) items of the same brand have
complementary relations (e.g., iPhone and AirPod), and (2) items
of the same category with similar prices have substitute relation
(e.g., Canon cameras and Nikon cameras). Furthermore, we also
take some item attribute information into account, including fine-
grained item category, item brand and item price. Item category
and brand are categorical features and we use the unique one-hot
encoding to represent them. For price information, we bin and cut
them into 10 intervals.

For reproducibility, we follow the commonly used benchmark
setting of ReChorus [26, 27] to set up our experiments. Specifically,
for each user, we first discard duplicated interaction sequences
and sort the items in each user’s sequence chronologically by their
timestamp. Furthermore, the maximum length of interaction se-
quences is set to 20. If there are more than 20 interactions in a
sequence, we adopt the latest 20 interactions. If the number of inter-
actions in a sequence is less than 20, we make it up to 20 by padding
virtual items with the ID of 0. For all baselines on all three experi-
mental datasets, hidden size and batch size is set to 64. Following
the common practice in sequential recommendations, we leave the
interactions happening at the latest time as the test dataset and the
interactions at the second latest time as the validation dataset.
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Table 2: Overall performance. Bold scores represent the highest results of all methods. Underlined scores stand for the second-
highest results. Ourmodel achieves the state-of-the-art result among all baselinemodels. ∗ means the improvement is significant
at 𝑝 < 0.05.

Dataset Metric BPR GRU4Rec Caser NARM SASRec TiSASRec SLRS+ Chorus AHMP KDA SDIL Improv.

Beauty

HR@5 0.3317 0.3202 0.3210 0.3334 0.4004 0.3872 0.4339 0.4536 0.4566 0.4860 0.4926∗ 1.36%
HR@10 0.4355 0.4311 0.4345 0.4462 0.5074 0.4980 0.5337 0.5698 0.5519 0.5997 0.6128∗ 2.18%
HR@20 0.5505 0.5693 0.5757 0.5823 0.6268 0.6179 0.6361 0.6838 0.6599 0.7144 0.7323∗ 2.51%
NDCG@5 0.2361 0.2271 0.2246 0.2348 0.2923 0.2904 0.3319 0.3386 0.3496 0.3648 0.3698∗ 1.37%
NDCG@10 0.2697 0.2628 0.2612 0.2712 0.3268 0.3181 0.3642 0.3762 0.3803 0.4016 0.4088∗ 1.79%
NDCG@20 0.2987 0.2976 0.2967 0.3055 0.3569 0.3483 0.3900 0.4050 0.4076 0.4306 0.4390∗ 1.95%
MRR 0.2363 0.2271 0.2246 0.2366 0.2923 0.2904 0.3319 0.3386 0.3421 0.3549 0.3610∗ 1.72%

Cellphone

HR@5 0.3387 0.3015 0.3937 0.4168 0.4586 0.4520 0.4696 0.4697 0.5045 0.5497 0.5538∗ 0.75%
HR@10 0.4528 0.4301 0.5309 0.5509 0.5810 0.5767 0.5641 0.5929 0.6132 0.6745 0.6792∗ 0.70%
HR@20 0.5852 0.5918 0.6810 0.6974 0.7067 0.7022 0.6637 0.7152 0.7284 0.7923 0.8028∗ 1.33%
NDCG@5 0.2430 0.2085 0.2800 0.2995 0.3412 0.3344 0.3634 0.3530 0.3852 0.4119 0.4188∗ 1.69%
NDCG@10 0.2798 0.2498 0.3243 0.3429 0.3809 0.3748 0.3939 0.3929 0.4204 0.4523 0.4595∗ 1.59%
NDCG@20 0.3131 0.2905 0.3622 0.3799 0.4126 0.4065 0.4191 0.4238 0.4495 0.4821 0.4908∗ 1.80%
MRR 0.2453 0.2271 0.2246 0.2969 0.2923 0.2904 0.3319 0.3386 0.3747 0.3666 0.4049∗ 10.45%

Toys

HR@5 0.2897 0.2902 0.2898 0.3173 0.3687 0.3475 0.4368 0.4124 0.4603 0.4805 0.4953∗ 3.08%
HR@10 0.3897 0.4060 0.4103 0.4336 0.4767 0.4608 0.5345 0.5203 0.5587 0.5882 0.6069∗ 3.18%
HR@20 0.5061 0.5546 0.5590 0.5777 0.6018 0.6003 0.6440 0.6443 0.6621 0.7019 0.7248∗ 3.26%
NDCG@5 0.2068 0.1974 0.1947 0.2206 0.3023 0.2535 0.3490 0.3132 0.3600 0.3660 0.3797∗ 3.74%
NDCG@10 0.2390 0.2348 0.2336 0.2581 0.3140 0.2901 0.3804 0.3480 0.3918 0.4007 0.4157∗ 3.74%
NDCG@20 0.2683 0.2721 0.2710 0.2944 0.3339 0.3253 0.4081 0.3793 0.4179 0.4294 0.4454∗ 3.73%
MRR 0.2116 0.2271 0.2246 0.2244 0.2923 0.2904 0.3319 0.3386 0.3547 0.3666 0.3713∗ 1.28%

5.1.2 Baselines for Comparisons. To evaluate the performance
of our model TPNE, we select 10 representative and/or state-of-the-
art recommendation models as baselines. They are classified into
the following three groups: (1) Non-sequential models: BPR [20]:
This model characterizes the pairwise interactions via a matrix
factorization model and optimizes through a pair-wise Bayesian
Personalized Ranking loss. (2) Non-time-sensitive sequential
models: GRU4Rec [10]: This model uses the GRU to model the
user interaction sequence and gives the final recommendation.
NARM [16]: It is a classic long- and short-term user interest mod-
eling, which designs two RNN-based global encoders and a local
encoder to model the user’s long and short-term interest respec-
tively. Caser [36]: This model embeds items in user interaction
history as image form, using convolutional filters for the recom-
mendation. SASRec [14]: This model leverages users’ longer-term
semantics as well as their recent actions simultaneously for accu-
rate next-item recommendations. (3) Time-sensitive sequential
models: TiSASRec [17]: This model leverages the timestamp in
the user-item interaction, exploring the different time intervals’
influence in the next item prediction. SLRS+ [26]: SLRS combines
Hawkes process and MF into one framework, which aims at model-
ing the user repeat consumption in the sequential recommendation.
Since the Amazon dataset removes the repeat consumption in the
test set, SLRS+ uses the Hawkes process to model the relations
including also view and also buy behaviors. AMHP [31]: This model
introduces the repeat category consumption into sequential recom-
mendation and adopts the self-attention architecture as the main
model. Chorus [27]: This model is a state-of-the-art method with

item relations and temporal evolution. KDA [25]: KDA devises rela-
tional intensity and frequency-domain embeddings to adaptively
determine the importance of historical interactions.

5.1.3 Implementation Details and Parameter Settings. To
ensure fair comparisons, we follow the ReChorus’ baseline imple-
mentation1. Specifically, for both our model and all baseline models,
we set the embedding size and batch size to 64. The number of train-
ing epochs for all models is set to 150 and an early-stop strategy is
used. When a model’s performance on the validation set decreases
for 10 consecutive rounds, the training will stop.

For fair comparison, we carefully tuned the model parameters of
all the baselines on the validation set. Then we choose the model
parameters that achieve the best performance on the validation set
to compare. In Caser, the number of horizon convolution kernels
is set as 64, the number of vertical convolution kernels is set as 32
and the union window size is set as 5. In GRU4Rec, the dimension
of the hidden layer is set as 64. In SARS and TiSARS, the number
of heads is set as 1. In SLRS+ and Chorus, the learning rate is set as
5e-4. In AHMP, both the head number and layer number are set as
1. The learning rate is set as 1e-4. In KDA, the number of heads is
set as 4, and the learning rate is set as 1e-3. Besides, the learning of
all the models is carried out five times to report the average results.

For our SDIL model, we set the number of heads in the multi-
head attention model of SIM to 4 and the number of layers of both
DIM and SIM to 2 by using a grid search from 1 to 8 with a step of
1. We set the embedding dimension of all the attributes including
price, brand, and category to 64.We pre-trained the item embedding

1https://github.com/THUwangcy/ReChorus
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with a learning rate of 5e-4 and the main model is optimized by
Adam optimizer with a learning rate of 1e-4.

5.1.4 Evaluation Metrics. We use three commonly used metrics
including Normalized Discounted Cumulative Gain @K (NDCG@K),
Hit Ratio @K (HR@K) and Mean Reciprocal Rank (MRR) [14, 27]
to evaluate the performance of all compared methods. For all the
baseline models, we generate the ranking list of items for each
testing interaction. Both of them are applied with 𝐾 chosen from
{5, 10, 20}. In order to accelerate the evaluation, following the work
[27], we evaluate the ranking results with 99 randomly selected
negative items. Meanwhile, we follow the setting in[28], using the
paired t-test with p<0.05 for the significance test.

5.2 Performance Comparison with Baselines
Table 2 reports the comparison results between our method and
10 different baseline methods on three datasets. The best results
and the second-best results across all methods are in bold and
underlined respectively. We have the following observations:

(1) First, we can find that all the non-time-sensitive sequential
methods such as GRU4Rec [10, 11], Caser [36] surpass the non-
sequential method BPR, which indicates the effectiveness of model-
ing sequential information. Meanwhile, NARM utilizes both global
and local encoders to model the long- and short-term interest of
users and thus performs better than GRU4Rec and Caser. More-
over, the self attention-based SRS, i.e., SASRec [14], consistently
outperforms previous traditional deep learning methods including
CNN-based Caser and RNN-based GRU4Rec, proving the effective-
ness of using the attention mechanism to encode sequence data.

(2) Second, more advanced time-sensitive sequential models,
such as TiSASRec [17], generally inherit the attention-based en-
coder while introducing extra-temporal signals to further improve
the recommendation performance. Specifically, TiSASRec explicitly
models both the absolute positions of items as well as time inter-
vals between them in a sequence, and thus it outperforms SARS
w.r.t most evaluation metrics on most datasets. SLRS+ [26] intro-
duces both knowledge-graph information and the multi-excitation
of items to further enhance the recommendation performance. Cho-
rus [27] further models the different situations of the temporal
effect of user-item interactions on item embedding level and thus
outperforms SLRS+. However, due to the limited representation
ability of its utilized basemodel, Chorus shows the over-fitting issue.
AHMP [31] models the user temporal category-level consumption
excitation via self-attention models, achieving the third-best results
on most datasets. KDA [25] designs the virtual relations between
items to enhance the relation learning between items, which helps
KDA obtain a significant improvement over other baselines.

(3) Third, our proposed SDIL model consistently outperforms
all baselines in all datasets. The average improvement compared
with the best-performing baseline is 10.45% w.r.t MRR in Cellphone
dataset. The reason is obvious. Different from most of the existing
SRS methods, which ignore modeling either users’ relatively stable
static interest, or the negative excitation of historical interactions
on user’s next choice, our proposed SDIL model has been carefully
designed to well address these issues. To be specific, SDIL not only
well models users’ static interest in items via carefully capturing
users’ interest on item attribute level, but also comprehensively

models users’ dynamic interest via the well-designed TPNE module.
More importantly, TPNE is able to model both positive and negative
excitation of users’ historical interactions on their next choice,
leading to significant performance improvement.

5.3 Ablation Study
To analyze the rationality and effectiveness of our designed com-
ponents in the SDIL model, we conduct the ablation study with
three variants. SDIL-1: Only uses static interest module to pre-
dict the next item; SDIL-2: Only uses dynamic interest module
to predict the next item; SDIL-3: Uses both dynamic and static
interest module to predict the next item without modeling exci-
tation. Figure 3 presents the performance of these three variants
and the full model SDIL on the three experimental datasets. First,
compare SDIL-1 and SDIL, we find the performance of SDIL-1 sig-
nificantly decreases when dropping the dynamic interest modeling
module TPNE from SDIL. This proves the extremely importance
of our designed TPNE module. Second, the comparison between
SDIL-2 and SDIL demonstrates that static interest modeling is also
vital for recommendation performance. The performance clearly
decreases without it. Third, the comparison between SDIL-3 and
SDIL demonstrates the importance of modeling historical interac-
tions’ excitation on users’ next choice. In summary, the dropping
of any of our designed components would lead to a clear reduc-
tion in recommendation performance, this effectively verifies the
effectiveness and rationality of our design.

5.4 The Effectiveness of Modeling Negative
Excitation

To verify the rationality of incorporating negative excitation and
the effectiveness of our proposed TPNE module, we keep the SDIL
framework while changing its TPNE module to TPE to obtain an-
other variant SDIL-TPE. TPEmodels users’ dynamic interest by only
considering temporal positive excitation only. As Table 3 shows,
SDIL consistently surpasses SDIL-TPE, indicating that the compre-
hensive modeling of both positive and negative excitation is more
effective compared with the modeling of only positive excitation.

5.5 Parameter Sensitivity Test & Case Study
We conduct the parameter sensitivity test to see how the key model
parameters will affect the performance of our SDIL model. The
result is shown in Figure 5. In addition, we conduct case studies to
show some insights on how our proposed model can work better
in a straightforward way. Due to the limited space, the details are
provided in Figure 6 and Figure 7. In this section, we will discuss the
parameter setting’s effect on themodel performance. The results are
presented in Figure 5. The embedding size of item representation
does affect the performance of SRS models. We can see that the
performance of the model increases consistently as the embedding
size increases.

Besides, we also conduct experiments about the different multi-
head numbers and transformer layers. The head number of TPNE
layers is searched from {1,2,4,6} and the Transfomer layer number is
searched from {0,1,2,3,4}.We can find that the performance increases
as the head number increases, while when the layer or head number
is too large, the model begins to over-fit.
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(a) Beauty Dataset. (b) Cellphones Dataset. (c) Toys Dataset.

Figure 3: Ablation Study on the Model Performance. (HR@5 and NDCG@5) on different datasets.

Table 3: Performance comparison between SDIL-TPE and
SDIL. ∗ means the improvement is significant at 𝑝 < 0.05.

Dataset Metrics SDIL-TPE SDIL

Beauty

HR@5 0.4825 0.4926∗
HR@10 0.6054 0.6128∗
NDCG@5 0.3487 0.3698∗
NDCG@10 0.4014 0.4088∗
MRR 0.3534 0.3602∗

Cellphones

HR@5 0.5521 0.5538∗
HR@10 0.6772 0.6792∗
NDCG@5 0.4102 0.4188∗
NDCG@10 0.4422 0.4595∗
MRR 0.4038 0.4049∗

Toys

HR@5 0.4871 0.4953∗
HR@10 0.5979 0.6069∗
NDCG@5 0.3741 0.3797∗
NDCG@10 0.3670 0.4157∗
MRR 0.3670 0.3713∗

Figure 4: Embedding size setting’s effect on the model per-
formance. (HR@5 and NDCG@10).

Figure 5: Different transformer layers setting’s effect on the
model performance. (HR@10 and NDCG@10).

To get a better understanding of the effectiveness of our TPNE
in a specific context, we randomly select a user sequence and list
the recommendation results of TPNE and its variant TPE. In Figure
6, the user’s interaction history demonstrates that the user first
purchased the Samsung S4 phone and then purchased the corre-
sponding accessories, including the wallet case holder, car phone
holder, and screen protector. For the next-item prediction task, the
ground-truth item is a blue-tooth earpiece. For the TPE using only
positive incentive learning, although it can capture the positive ex-
citation between the phone and the earpiece, it also introduces the
positive excitation with the screen protector. However, the user has
already purchased the screen protector in the previous moment, so
it will lead to homogeneous recommendations, resulting in inaccu-
rate recommendation results. As for TPNE, our model considers the
negative excitation of similar items in the short term, in this case,
for the similar screen protector items in timestamp 𝑡 , the model
will come out with a negative mutual exclusion signal. Thus, the
homogeneous recommendation can be effectively alleviated, and
better recommendation performance can be obtained. It verifies the
importance of considering both positive and negative excitation
learning. Moreover, to prove the superiority of SDIL in combining
both dynamic and static interest contexts. We listed the ranking
results of DIL, SIL, and SDIL. As Figure 7 illustrated, we random
sample one user interaction item history. We can also find our SDIL
can well capture the user intent in the next-item prediction task.

6 CONCLUSION
In this paper, we propose a novel Static-Dynamic Interest Learning
(SDIL) framework to comprehensively model users’ static interest
and dynamic interest in items for generating accurate sequential
recommendations. More importantly, to comprehensively model
users’ dynamic interest, we devise a novel Temporal Positive and
Negative Excitation modeling (TPNE) module. TPNE can not only
well capture both the positive and negative excitation of each user’s
historical interactions on his/her next choice of items, but also is
able to specify the excitation strength for each historical interaction
according to its happening time. Our extensive experimental results
on four real-world datasets validate the superiority of our proposed
model over state-of-the-art methods. In the future, we will explore
how to better model users’ static interest to further enhance the
performance of our model.
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Figure 6: Illustration of the ranking results of TPE and TPNE.
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